Spectral order preserving matrices and Muirhead’s theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

linear maps preserving or strongly preserving majorization on matrices

for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...

متن کامل

A Mining Order-Preserving SubMatrices from Probabilistic Matrices

The Order-Preserving SubMatrices (OPSMs) capture consensus trends over columns shared by rows in a data matrix. Mining OPSM patterns discovers important and interesting local correlations in many real applications, such as those involving biological data or sensor data. The prevalence of uncertain data in various applications, however, poses new challenges for OPSM mining, since data uncertaint...

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

A Theorem on Partially Ordered Sets of Order-preserving Mappings

Let P be a partially ordered set and let Pp denote the set of all order-preserving mappings of P to P ordered by/ < g in Pp iif(p) < g(p) for all p £ P. We prove that if P and Q are finite, connected partially ordered sets and Pp = Q<¡ then Psg. Is a partially ordered set determined by its order-preserving mappings? L. M. Gluskin [4] has shown that the set of order-preserving mappings of a part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1974-0379780-9